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The axisymmetric deformation of a red blood cell placed in a uniaxial straining 
Stokes flow is considered. The cell is modelled as a fluid capsule that contains a 
Newtonian fluid, and is bounded by an area-preserving membrane with negligible 
resistance to bending. First, it is theoretically demonstrated that spheroidal cells 
with isotropic membrane tension constitute stationary configurations. To compute 
transient cell deformations, a numerical procedure is developed based on the 
boundary-integral method for Stokes flow. Calculations show that initially prolate or 
oblate cells with isotropic membrane tension deform into stationary spheroids. Cells 
with a highly oblate initial shape may develop a persistent small pocket along 
their axis during the deformation. The shear elasticity of the membrane prevents 
folding, but may cause the formation of sharp corners and concave regions along the 
cell contour. A decrease in the membrane shear elasticity results in substantial 
increase in the magnitude of the transient and asymptotic membrane tensions. The 
maximum strain rate below which a red blood cell remains intact is estimated to  be 
emax = lo5 s-l. 

1. Introduction 
Red blood cells are fluid capsules that contain a nearly Newtonian solution of 

haemoglobin and are bounded by a flexible biological membrane (Evans & Skalak 
1980). Under normal quiescent conditions, the red blood cells assume the shape of 
biconcave disks, that is, disks with a double-sided dimple at the centre. The large 
diameter of a red blood cell is approximately equal to 8 pm. The unstressed cell shape 
may be modified by altering the tonicity of the suspending fluid. The cell membrane 
consists of a mobile double molecular layer of lipids and several proteins which is 
supported by a rigid network of a protein called spectrin. This rather complex 
structure renders the cell membrane an area-preserving (incompressible), two- 
dimensional medium with small resistance to shearing deformation, and extremely 
small resistance to bending. The mammalian red cell is the only biological cell known 
to have a structureless, liquid interior and an area-preserving membrane. 

When a red blood cell is placed in a straining flow, it starts deforming much like 
a liquid droplet. When the straining flow is rotational and the shear rate is above a 
threshold value, the cell membrane deforms as well as rotates in a ‘tank-treading’ 
mode, inducing internal circulation (Keller & Skalak 1982). Unlike a liquid drop, a 
red blood cell may not deform without limit owing to the virtually constant area of 
the bounding membrane. As the intensity of the imposed straining flow is increased 
the membrane tension escalates to higher levels, eventually leading to rupture and 
hemolysis. Understanding how a red blood cell deforms and breaks up under the 
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action of the straining flow is a problem of fundamental medical significance. First, 
it provides information on the instantaneous cell shape and membrane tension 
during large-scaled blood flow. Second, it supplies us with useful guidelines for the 
design of artificial circulation organs such as cardiac valves. Furthermore, as noted 
by Fung (1981), the study of red blood cell deformability is of clinical value, for 
changes in shape, size, and strength of red cells may be indicative of a blood disease 
(for a particular example see Fischer 1989). 

Ideally, one would like to tackle the problem of red-cell deformation in its exact 
formulation, coupling the external to the internal cell flow, and taking into 
consideration the exact mechanical characteristics of the cell membrane. This turns 
out to be a difficult task, calling for simplifying assumptions in regard to the 
unstressed cell shape, the cell membrane mechanical characteristics, or both. In this 
spirit, Barthes-Biesel (1980), Barthes-Biesel & Rallison (1981), Li, Barthes-Biesel & 
Helmy (1988) and Brunn (1983) considered small transient deformations of a nearly 
spherical capsule which is imbedded in shear flow. Li et al. (1988) considered the 
axisymmetric deformation of a cell placed in uniaxial straining flow assuming that 
the cell membrane exhibits elastic behaviour and relaxing the condition of 
incompressibility. Keller & Skalak (1982) considered non-deforming ellipsoidal cells, 
where the cell membrane moves with a prescribed velocity, with interest in capturing 
the main effects of the membrane tank-treading motion. A number of other authors 
have presented two-dimensional models for infinite flow or for flow within confined 
channels (Niimi & Sugihara 1985; Zahalak, Rao & Sutera 1987). 

In the present work we study the deformation of a cell in an imposed uniaxial 
straining flow. In our analysis, we consider unstressed cell shapes that resemble those 
of red blood cells, and use an accurate model for the mechanical response of the cell 
membrane. Specifically, we assume that the membrane is a two-dimensional area- 
preserving (incompressible) medium with finite shear elasticity but negligible 
resistance to bending (Skalak, Oskaya & Skalak 1989). The most critical 
approximation in our analysis is the assumption of axisymmetric deformation, 
adopted purely for analytical and computational convenience. Admittedly, con- 
sidering axisymmetric deformations prevents the membrane tank-treading motion, 
a feature that requires a genuinely three-dimensional deformation. A second 
assumption in our analysis is that the viscosity of the fluid within the cell is equal to 
that of the surrounding fluid. For a human red cell in vivo, the ratio between the 
viscosity of the internal and external fluid is approximately equal to five. In  
experimental flows, however, this ratio is readily controlled, and it is usually set to 
a value less than one (Tran-Son-Tay, Sutera & Rao 1984). 

To make our investigation more comprehensive, we examine cells with a variety 
of unstressed shapes including oblate and prolate spheroids. Our objectives are to 
document the possible modes of cell deformation, to assess the significance of 
membrane shear elasticity, and to compute the magnitude of the membrane tensions 
developing during the cell deformation. Our analysis proceeds in two stages. First, we 
study a family of stationary cells with isotropic membrane tension that are imbedded 
in a uniaxial straining flow. These are viewed as asymptotic states of cells that have 
undergone a transient deformation. In the second stage we study transient cell 
deformations. For this purpose, we develop a numerical procedure which is based on 
the boundary-integral representation of Stokes flow (Rallison & Acrivos 1978). We 
thus represent the veloeity field inside and outside the cell in terms of a distribution 
of fundamental solutions to the Stokes equation over the cell surface, The density of 
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FIGURE 1. Schematic representation of an axisymmetric cell deforming in a straining flow ; 
T,, and T+# are the meridional and azimuthal membrane tensions. 

this distribution involves the principal membrane tensions. Combining this 
representation with a constitutive equation for the membrane stresses and with the 
condition of membrane incompressibility provides us with a linear integral equation 
for the principal membrane tensions. We solve this equation using a procedure that 
entails surface discretization and subsequent collocation. Overall, the numerical 
procedure of solution is similar to that employed in previous studies of drop or cell 
deformations, in particular those by Rallison & Acrivos (1978), Li et al. (1988), 
Pozrikidis (1990). 

In $2 we formulate the problem as an integral equation, combining the equations 
of fluid flow inside and outside the cell with those of the mechanical equilibrium of 
the cell membrane. In $ 3  we show that spheroidal cells with isotropic membrane 
tension constitute stationary configurations. This renders the spheroidal shape a 
strong candidate for the asymptotic shape of a deformed cell. In  $4  we present results 
of numerical computations for transient deformations, and in $ 5  we summarize and 
conclude our discussion. 

2. Formulation 
2.1. The contour dynamics equation 

We consider the deformation of an axisymmetric cell which is imbedded in uniaxial 
straining flow a t  vanishing Reynolds number, as illustrated in figure 1. We denote 
the cell fluid with the index 2, and the suspending fluid with the index 1. In  Cartesian 
coordinates with origin at the cell centre, the far-field flow is given by 

where e is the rate of strain. The cell contains a Newtonian fluid which is enclosed 
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by a thin biological membrane. The viscosity p of the fluid inside the cell is assumed 
to be equal to  the viscosity of the suspending fluid. At the outset we non- 
dimensionalize all variables using as a characteristic timescale l / e ,  lengthscale the 
equivalent cell radius (3V/47c)i, stress scale pe, and tension scale pea, where V is the 
cell volume. We then decompose the total flow into the far-field and disturbance 
components, where the latter is exclusively attributed to the presence of the cell. 
Using the boundary-integral formulation (Rallison & Acrivos 1978), we find that the 
total flow, both inside and outside the cell, may be expressed as 

. I -  

where Af is the jump in surface stress across the surface of the cell defined by 

Af = f , - f ,  = ( ~ , - ~ ~ ) * f i  (2.3) 

and u is the stress tensor. The integral in (2.2) is over the surface of the cell, whereas 
the unit normal vector fi  in (2.3) is directed outside the cell and into the ambient fluid, 
as indicated in figure 1.  In  (2.2), S is the free-space Stokeslet defined as 

where f = x-x,, and r = 121. If Af is known, (2.2) may be used to compute the 
velocity a t  any point inside, outside, and more importantly, on the surface of the cell. 

For axisymmetric flow, the azimuthal component of Af is equal to zero. Referring 
to the polar cylindrical coordinates (x, u, 4) of figure 1, we write Af = (Afz, Af,,,O), 
and express Afz, Afy, and Af,, in terms of Afz and Afn. Substituting into (2.2) and 
performing the integration in the azimuthal direction we obtain 

u a ( X 0 )  = uztr(x0)-- Mao(x, ~ 0 )  Af&x) (2.5) L s, 
where Greek indices take the value 1 or 2 for the x- and a-direction respectively, 
and the integration is over the cell contour in a meridional plane, denoted by 92 in 
figure 1.  In (2.5) x = (x, a), and xo = (x,, cr,,). The matrix M was given by Rallison & 
Acrivos (1978), but for completeness, it is also given in the Appendix. When the cell 
attains a stationary configuration, the velocity inside and on the surface of the cell 
is equal to zero, and the pressure inside the cell is constant. 

2.2. The mechanical behaviour of the membrane 
Before we can use (2.5) to compute the deformation of the cell, it is necessary to 
define the discontinuity in surface stress Afa, a = 1,2 ,  taking into consideration the 
mechanical characteristics of the cell membrane. For this purpose, it is convenient to 
decompose A f into its normal and tangential components 

(2.6) 

Now, in general, a cell membrane may support both shear and normal stresses, 
implying that both the tangential and the normal component may have finite values. 
For a membrane with only in-plane stresses and negligible resistance to bending, 
such as the membrane of a red blood cell, Af may be expressed with respect to the 
principal tensions of the membrane in the meridional and azimuthal direction, r,, 

Af = ( A f * f i ) f i +  (Af-f) f. 
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and 7,, respectively (figure 1) .  Specifically, the equations of mechanical equilibrium 
of a material element on the membrane require that 

( 2 . 7 ~ )  

A f * fi  = k,  7,, + k, 7$, (2.7 b )  

(see for instance Evans & Skalak 1980, p. 58). Here, k, and k, are the curvatures of 
the surface of the cell in the meridional and the azimuthal direction, defined as 

s is the arclength measured along the contour %?, 8’ is the angle formed by the normal 
to the cell contour and the x-axis, ri, = fi-g, andgis the unit vector in the a-direction 
(figure 1) .  The unit tangent vector t^ in ( 2 . 7 ~ )  is oriented in the counterclockwise 
direction, as indicated in figure 1.  Furthermore, we may express the principal 
tensions 7,, and 7,, in terms of their mean (isotropic) and deviatoric components, 

(2.9a, b )  

(2.9c, d )  

7,, = 7 m  + 7d,  7,, = 7m - 7d,  

7m = 37,, + 7,,), 7 d - 1  - -(7 where 2 ss-7,& 

Substituting (2.9a, b )  into (2.7a, b )  and subsequently into (2.6) we obtain 

d7m d7d 2617 
ds ds a a s  

A f = [ ( k ,  + k,) 7m + ( k ,  - k,) 763 f i  - -+ -+--7‘] f. (2.10) 

It is instructive to note that in the case of a liquid drop the deviatoric component T~ 

vanishes, whereas the mean membrane tension 7m is equal to the surface tension y .  
We proceed now to derive constitutive relationships for the membrane tensions. 

One relationship comes from the requirement that  the surface area of the membrane 
remains locally and globally constant in time. To quantify this requirement, we 
introduce the Lagrangian parameter p(0 < p < IT) marking individual material 
elements on a meridional contour of the membrane, and view the position of an 
element a function of time t and /? (figure 1). The area of the dotted axisymmetric 
section of the membrane indicated in figure 1 is equal to 

(2.11) 

At this point, i t  is convenient to introduce the principal extension ratios A, and A, 

(2.12a, b)  

where the membrane is assumed to be unstressed a t  t = 0. Note that a t  the initial 
instant t = 0, or along the axis of symmetry, A, = A, = 1.  We then rewrite (2.11) in 
the equivalent form 

A ( p , t )  = 2 ~ [ ( a g )  h,A,dp’ 
adp’ t-0 

(2.13) 
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It is clear that in order for the area of the membrane to remain locally constant in 

time, h,h, = 1 (2.14) 

for any value of p. Differentiating this equation with respect to time keeping /3 
constant, we derive the desired condition of area preservation : 

(2.15) 

Substituting (2.5) into (2.15) we finally obtain 

where all variables are written in cylindrical polar coordinates. This equation defines 
a kinematic constraint for the cell deformation, and plays the role of a constitutive 
equation for the membrane tension. 

To complete the definition of our problem we need an additional scalar constitutive 
equation. For lack of a better alternative, we set the deviatoric component of the 
tension equal to that for an isotropic elastic material obeying a Mooney's constitutive 
law (Secomb et al. 1986). Requiring in particular that  the material is linear or neo- 
Hookean (Li et al. 1988), we obtain 

(2.17) 

where K is the shear modulus of elasticity. Note that a t  the initial instant rd = 0. 
Inserting (2.17) into (2.10), and substituting into (2.16) we obtain a linear integral 

equation for rm. Unfortunately, we were not able to theoretically assess the 
uniqueness of solution of this equation, except in the special case of a cell with 
isotropic tension and constant mean curvature. In this case 7m may be defined within 
an arbitrary constant. Physically, this implies that the pressure within the cell may 
be set to an arbitrary level without any consequences on fluid motion or cell 
deformation. In  any case, solving the derived integral equation allows the 
computation of the membrane velocity using (2.5). 

2.3. Numerical solution of the integral equation 
In our numerical procedure we trace contour of the cell in a meridional plane with 
a set marker points, xi = (xi, vi), i = 1 ,  . . . , N+ 1 ,  as indicated in figure 2. These points 
are equally spaced with respect to a suitably chosen Lagrangian variable p(0 < 
/3 < K). We approximate the cell contour with a set of circular arcs, each passing 
through trios of successive marker points, associate with each marker point a value 
of the isotropic tension 711, and compute the derivatives drm/ds by approximating 7m 

with a fifth-degree polynomial with respect to s in the vicinity of each marker point. 
Furthermore, we approximate A f with a linear function with respect to arclength 
between two successive points. This discrete representation allows us to write (2.16) 
in the symbolic form 

w, ; {Xi> ,  W>) = 0, (2.18) 

where the function F is identified with the left-hand side of (2.16). To make the linear 
dependence of F on TY explicit, we rewrite (2.18) in the form 

C,(x,; {Xi>) 7;" = G(x,; {Xi)), (2.19) 
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where 

FIGURE 2. Discretization of the cell contour in a meridional plane. 

( 2 . 2 0 ~ )  

G(x0; {Xi>) = -F(x ,  ; {XJ, {7? = O } ) ,  (2.20b) 

and the summation convection is implied for the repeated index j in (2.19). In 
practice, we find convenient to compute C using the difference formula 

c, = w, ; {XJ, 17;" = 8,H - w o ;  {Xi>, {7t" = 01). (2.21) 

When (2.19) is applied a t  the N +  1 marker points on the cell surface {x, = x l ,  1 = 1, 
. . . , N +  1}, it provides us with N +  1 linear algebraic equations for the unknown mean 
tension 7;". Note that (2.19) is trivially satisfied a t  i = 1,  and thus it must be replaced 
with its derivative with respect to arclength. To avoid this complication, we express 
7f: with respect to T? and T$ using parabolic extrapolation. The size of the resulting 
linear system may be reduced by exploiting the fore-and-aft symmetry of the cell 
shape. Thus, we set 77 = T?~.. .~,  where K = N/2+ 1,  and N is taken to be even 
(figure 2). After implementing these modifications, we end up with a set of K -  1 
unknowns, namely r?, i = 2, . .., K and a system of K -  1 equations, 

(2.22) 

which we solve using regular Gauss elimination. Having obtained {T?}, we compute 
the velocity at the marker points by performing contour integration as required by 
(2.5). The singular part of the integral is subtracted-off and integrated analytically 
over each arc (Pozrikidis 1990). Finally, we advance the position of the marker points 
using simple time stepping (Euler's method). In the majority of our calculations, we 
maintained the number of points constant throughout a run. In  certain instances 
though, we introduced mechanisms of point removal and addition, as discussed by 
Pozrikidis (1990). 

It is worth noting that we have implemented various modifications of the above 
procedure, using higher- and lower-order local polynomial approximations for the 
unknown functions. The above procedure, however, gave most stable and accurate 
results in the range of parameters considered. We have also implemented an 
alternative method of solution based on a spectral expansion of the isotropic tension 
with respect to arclength. The coefficients in the Fourier series were computed by 
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collocation, that is, by enforcing (2.18) a t  the marker points. For moderate cell 
deformations, the spectral method gave results indistinguishable from those obtained 
by the method described above. For large deformations, the spectral method was less 
accurate. 

All computations were carried out on a SUN-4 computer of our Computational 
Fluid Mechanics Laboratory. In the majority of our computations we used K = 48 
or 64. A single time step required approximately 45 s of CPU time. The cell volume 
changed by less than 0.10 YO, while the total surface area changed by less than 0.50% 
from the beginning to the end of a calculation. The product of the principal extension 
ratios Ash,, theoretically equal to 1, remained within l + O . O O l  all around the cell 
contour in all calculations. 

2.4. Numerical smoothing 

During the course of our computations we observed the onset of saw-tooth numerical 
instabilities with wavelength equal to twice the separation between two successive 
points. These instabilities first manifested themselves in the distribution of the 
isotropic membrane tension, and then in the position of the marker points. They 
disappeared when the number of points was increased to a sufficiently high level and 
the size of the time step was set to  a sufficiently small value. It was suspected that 
the instabilities were due to the absence of bending resistance, but proving this 
possibility requires detailed investigations. 

To eliminate the observed instabilities, while maintaining the number of points a t  
a moderate level, we decided to smooth out small-scale irregularities in the 
distribution of the isotropic tension, and in the position of the marker points. Three 
mechanisms of smoothing were tested. The first mechanism entailed reposition of the 
marker points on the least-square parabola which is defined by five successive marker 
points. The second mechanism was based on a Fourier decomposition of the sets 
(x,,p,} and { c T , , ~ , } ,  where we recall that  is a Lagrangian parameter around the 
meridional contour. Smoothing was effected by recomputing the position of all 
marker points using only a portion of the Fourier spectrum. The third mechanism of 
smoothing was based on the five-point formula proposed by Longuet-Higgins & 
Cokelet (1976), and successfully used in the computation of breaking water waves. Of 
the three mechanisms of smoothing, the third one gave most accurate and stable 
results, and was adopted in the majority of our computations. Best results were 
obtained when smoothing was applied not only to the position of the marker points, 
but also to the distribution of the isotropic membrane tension, just before the 
computation of the velocities. 

Saw-tooth instabilities, apparently similar to the ones encountered in our 
calculations, were also observed by several previous workers including Rallison & 
Acrivos (1978) for liquid drops, and Li et al. (1988) for capsules confined by elastic 
membranes. The former authors were able to cure the problem by decreasing the size 
of the time step to a sufficiently low level (see also Pozrikidis 1990). Unfortunately, 
this is not possible in our case, for our instability is caused not only with the temporal 
but also with the spatial discretization, requiring small time steps and a large number 
of points. It is this dual requirement that raises pragmatic difficulties, and 
necessitates numerical smoothing. The instabilities observed by Li et al. (1988) are 
likely to be similar in nature to the ones infesting our calculations. These authors also 
had to apply numerical smoothing which they effected using cubic splines. 
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3. A family of stationary cell shapes 
It is plausible that when placed in a uniaxial straining flow, a cell will start 

deforming along its axis of symmetry. Furthermore, it is plausible that after an 
initial deformation period, the cell might attain a stationary configuration which 
depends on the unstressed cell shape as well as on the mechanical properties of the 
bounding membrane. In the case of isotropic membrane tension (vanishing shear 
elasticity), the asymptotic cell shape might be independent of the unstressed cell 
shape. This is because the instantaneous membrane tension is independent of the 
position of elementary particles on the cell membrane relative to their position a t  the 
initial instant. It is then natural to consider the shape of stationary configurations 
with isotropic tension, viewed as asymptotic configurations of cells that have 
undergone transient deformations. 

Our search for stationary cell configurations will be based on the proposition that 
spheroidal cells with isotropic tension, axisymmetrically placed in a uniaxial straining 
$ow, constitute stationary conjigurations. To demonstrate the validity of this 
proposition, we shall show that the hydrodynamic surface stress distribution exerted 
on a stationary spheroidal cell is consistent with the membrane force balance 
expressed by (2.10). In our analysis, we shall maintain the notation and non- 
dimensionalization introduced in the preceding sections. 

Essential to our analysis is the work of Jeffery (1922) who showed that the surface 
stress acting on the external surface of an ellipsoidal particle which is immersed in 
a general linear flow, is given by 

f, = (-P,/+A).ti. 13.1) 

Here Po is a constant reference pressure, and A is a constant matrix whose elements 
are functions of the type of flow and of the geometry of the ellipsoid. The remarkably 
simple form of (3.1) (a constant matrix multiplied by the normal vector) was noted 
by several previous authors, and was exploited to derive the rheological properties 
of dilute suspensions of deformable ellipsoids (Cerf 1951 ; Roscoe 1967 ; Goddard & 
Miller 1967). Decomposingf, into its normal and tangential components we obtain 

(3.2) 

We concentrate now on a spheroid which is parametrically described by the 
equations x = a cosp, a = b sinp, 0 < ,8 < R ;  a is the axis of the spheroid in the x- 
direction, and b is the axis of the spheroid in the polar a-direction. For the uniaxial 
straining flow described by (2.1), A is a diagonal matrix with A,, = AS3.  The exact 
expressions for the diagonal terms, extracted from the work of Jeffery (1922, p. 167), 

fi = (-Po + t i .  A .  r i )  ri + A .  ii - (ti .A.  ri) r i .  

are 4 

where 

(3.3a) 

(3.3b) 

and E is the aspect ratio of the cell E = a /b  (see also Roscoe 1967, $8). Applying (3.2) 
we find that the surface stress on the external side of the spheroid is given by 

f, = (-Po +A,,  6;+A*2 6:) ti+ Gzfi0 i. (3.4) 

We recall now that the spheroid represents a stationary cell whose internal velocity 
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vanishes, and whose internal pressure is a constant, call it Pint. The surface stress on 
the internal side of the cell is thus equal to 

fi = A. (3.5) 

(3.6) 

Subtracting the last two equations we obtain 

Af fl -fi = (PI,,, -Po +All  ri;+A2, f iz) li+ (A22 -All) A, A, i. 
We now inquire whether this expression is consistent with the membrane force 
balance expressed by (2.10) with rd = 0. Specifically, we ask whether there exists a 
function rm, identified with the isotropic membrane tension, such that both of the 
following equations are satisfied : 

( k , + k + ) r m  = PInt -Po+Al lA~+A22A~,  (3.7a) 

drm 
ds 
-- - (All --A221 ri, A,. (3.7b) 

We note that for a spheroid 
E 1 + cos2,8+ E2 sin2p 
b (E2 sin2 /? + cos2 p)’ ’ 

k , + k + = -  ( 3 . 8 ~ )  

E sin@ 
(3.8b) 

cos p 
n, = nu = 

(E2 sin2/3+ cos2p):’ (E2sin2p+cos2/3);’ 

Substituting (3.8u, b)  into ( 3 . 7 ~ )  and solving for rm we obtain 

E2 sin2 p+ cos2 p. (3.9) 
7 m  = - b (PI,, -Po +A,,) E2 sin’ p+ (PI,, -Po +A,,)  cos2 /3 

E (E2 + 1) sin2 p+ 2 cos2 p 
On the other hand, using (3.8b) we rewrite (3.7b) in the equivalent form 

(3.10) 

which upon integration yields 

rm = a ( ~ 2  sin2 p + cos2p)t + D ,  (3.11) 

where D is an arbitrary constant. We then arrive at the rather remarkable conclusion 
that (3.9) and (3.11) are identical provided that 

2VInt -Po +A,,) E2 = (E2 + 1 ) K n t  -Po +All), (3.12 a)  

D = 0. (3.12b) 

E2-  1 

With the aid of (3.3a), the first of these conditions gives 

(3.13) 

This equation relates the pressure inside the cell to that a t  infinity. Note that as the 
spheroid tends to obtain a spherical shape, E +  1, PI,, increases without limit. The 
pressure difference AP = Prnt-Po is positive for prolate shapes ( E  > l), and negative 
for oblate shapes (E < 1 ) .  In figure 3(a )  we plot Prnt-Po as a function of the aspect 
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FIQURE 3. Spheroids constitute stationary configurations of deformed cells : (a) the internal cell 
pressure AP = PInt-Po, and ( b )  the amplitude of the isotropic membrane tension F 3 4ag;/(E2- l ) ,  
plotted with respect to the spheroid aspect ratio a l b  or bla,  for prolate and oblate shapes. 

alb or bla 

ratio E = a /b  for prolate shapes, and Po-P,,, as a function of 1/E = b/a  for oblate 
shapes. We observe that as a prolate spheroid becomes increasingly more eccentric, 
Prnt-Po decreases, reaches a minimum at a /b  = 2.13, and then starts increasing: 
Similarly, as an oblate cell obtains a more disk-like shape, the internal pressure 
increases, reaches a maximum a t  b/a  = 3.57, and then starts decreasing. 
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Using (3.11) and (3.3a), we find that the distribution of the membrane tension is 

( 3 . 1 4 ~ )  
given by 

rm = F(E2 sin2 /3+ cos2 /3)+, 

where 
4agl F = -  

E2-1 ‘ 
(3.14b) 

The membrane tension is positive for prolate shapes E > 0 (the membrane is 
stretched), and negative for oblate shapes E < 0 (the membrane is compressed). As 
the spheroid tends to become a sphere, E + 1, the membrane tension increases in 
magnitude without limit. This behaviour is also evident in figure 3 ( b )  where we plot 
the amplitude of the distribution F versus the aspect ratio E = a / b  or 1/E = b/a.  For 
prolate shapes, as a/b  is increased, F decreases, reaches a weak minimum, and then 
starts increasing. It is interesting to not’e that beyond a/b = 4, the membrane tension 
is virtually insensitive to  the, aspect ratio. Within the range of figure 3 ( 6 ) ,  minimum 
F corresponds to E = a/b  = 8.0. Similarly, as the spheroid obtains a disk-like shape, 
that is, as 1/E = b/a  is increased, the magnitude of F decreases, reaches a weak 
minimum a t  b/a  = 7.5,  and then starts increasing. 

The above results clearly indicate that the spherical shape constitutes a singular 
case for i t  is associated with infinite values for the internal pressure and for the 
membrane tension. Physically, this may be attributed to the fact that a spherical cell 
may not deform under constant volume without increasing its surface area, 

The analysis in this section may be conveniently used to test the validity and 
accuracy of the numerical procedure for transient deformations described in the 
preceding section. Our computations confirmed that, indeed, prolate and oblate 
spheroidal cells with isotropic tension constitute stationary configurations. As will be 
seen in the next section, the computed stationary membrane tensions were in perfect 
agreement with those predicted by (3.14a, b ) .  I n  addition, our results showed that 
prolate shapes are stable, whereas oblate shapes are unstable to axisymmetric 
perturbations in shape. Indeed, in our computations, perfectly oblate spheroids 
survived for a limited time, and then they developed small-scale irregularities 
initiated by numerical error. Perturbed oblate spheroids deformed into corresponding 
prolate spheroids with same volume and surface area, as will be described in the next 
section. 

4. Transient cell deformations 
I n  this section we investigate transient cell deformations maintaining the non- 

dimensionalization of the preceding sections. It will be convenient to introduce two 
new dimensionless parameters : the membrane modulus of elasticity Ic = K/ ,uea ,  and 
the sphericity index 9, 

(A/4rc)i 
Y =  (3V/47C)5’ (4.1) 

A is the total surface area, and V is the volume of a cell, and both are conserved 
during a transient cell deformation. For the sphere Y = 1, while for any other shape 
Y > 1.  Note that under the adopted non-dimensionalization, constant Y implies 
constant surface area. For prolate spheroidal cells, the sphericity index is related to 
the aspect ratio E = a/b  through the relationship 

arcsin 
E2 
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FIQURE 4. (a) Characteristic stages in the deformation of an oblate cell with E = -0.300, and 
k = 0, a t  times 0, 0.0975, 0.1725, 0.2250, 0.3000, 0.3750, 0.5025; the shape labelled a, which is 
indistinguishable from that at time 0.5025, is a perfect spheroid with the same volume and surface 
areas as the original cell; (6) the isotropic tension distribution for the deformation stages shown in 
(a). 

In the main body of our computations we consider cells whose unstressed shape is 

(4.3) 
described by 

where P2 is the second-degree Legendre polynomial, E is an arbitrary constant which 

r = 6(1+~P,(cos8)) 
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PIQURE 5. (a) Characteristic stages in the deformation of an oblate cell with B = -0.500, and 
k = 0, at times 0, 0.0825, 0.1500, 0.2250, 0.3000, 0.3750, 0.4800, 0.5700, 0.6150, 0.6525; the shape 
labelled 00 is a perfect spheroid with the same volume and surface area as the original cell; ( b )  the 
isotropic tension distribution for the first eight stages shown in (a). 
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varies between -1 and 2, and 0 is the polar angle in a meridional plane (figure 1). 
The scaling constant S is a function of e and is chosen such that the cell volume is 
equal to 4n/3. Positive e produces prolate shapes, while negative e gives oblate 
shapes. The oblate shapes produced by (4.3) resemble spheroids or biconcave disks 
and thus they provide us with convenient prototypes for studying the stability of 
spheroidal cells and the deformation of red blood cells. 

First, we consider oblate cells with negative values of E ,  and with isotropic 
membrane tension, k = 0. In figure 4(a) we present characteristic stages in the 
evolution of a cell with E = -0.300, and corresponding sphericity index Y = 1.0168. 
We observe that a t  small times, the cell is squeezed along the x-axis under the action 
of the imposed straining flow. A portion of the cell membrane close to the axis of 
symmetry starts moving towards the midplane of the cell, causing the formation of 
an axisymmetric dimple. At t = 0.1725, the dimple has attained maximum size. At 
latter times, the main body of the cell continues being elongated along the x-axis, and 
the dimple begins to shrink. Asymptotically a t  large times, the cell reduces into a 
spheroid with aspect ratio a/b = 1.616 or Y = 1.0188, labelled 00 in figure 4(a). 
Thus, our numerical results support the idea that the cell deforms into a stationary 
ellipsoid. In figure 4(b) we plot the distribution of the isotropic membrane tension for 
the evolution stages illustrated in figure 4(a). The membrane tension is initially 
negative, but becomes positive when the cell has been sufficiently elongated along the 
x-axis. We shall comment on the significance of negative tension in the next section. 
Overall, the transition from the initial to the final tension distribution proceeds in a 
smooth fashion. 

In figure 5(a) we present characteristic stages in the evolution of a cell with 
e = -0.500, and Y = 1.044. The initial stages of deformation are similar to those 
described in figure 4(a) fore = -0.30. We note, however, that as the cell is elongated 
along the x-axis, the dimple transforms into a persistent depression at the tip of the 
cell. At large times, the main body of the cell closes upon itself along the x-axis, and 
the cell reduces into a spheroid that contains two small pockets a t  either tip. The 
label 00 in figure 5(a)  indicates a spheroidal cell with volume and surface area 
identical to those of the original undeformed cell. Although calculations a t  large 
times were prohibited by the onset of severe irregularities in the distribution of 
the membrane tension, the results indicate that the main portion of the cell does 
attain a spheroidal shape. In figure 5(b) we plot the distribution of the membrane 
tension for the various stages shown in figure 5(a ) .  The tension is compressive at  
small times, and stretching a t  large times. Asymptotically a t  large times, the 
distribution of tension over the main body of the cell tends to that for a spheroid. The 
irregular behaviour around the tip of the spheroid is indicative of membrane folding. 
As mentioned above, the details of the membrane tension distribution at the final 
stages of deformation could not be resolved with acceptable accuracy in our 
computations. 

We now turn to investigate the effect of shear elasticity, expressed by the 
dimensionless parameter k. In  figure 6 (a, b)  we present two sequences of cell profiles 
for e = -0.30, and k = 10, and 20. Figure 6(a), corresponding to k = 10, suggests 
that increasing the shear elasticity reduces the size of the dimple, but causes the 
formation of a transient region of small curvature a t  the base of the dimple. At large 
times, the cell reduces into an almost perfect spheroid. For the purposes of 
comparison, in figure 6 (a ) ,  and under the label 00, we have drawn a perfect spheroid 
with the same volume and surface area as the initial cell. Comparing the times for the 
various evolution stages shown in figure 6(a) and figure 4(a) we find that as k is 
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FIGURE 6. The effect of shear elasticity : characteristic stages in the deformation of an oblate cell 
with e = -0.300, and (a) k = 10 at times 0, 0.0950, 0.1750, 0.2350, 0.3000, 0.3750, 0.4500, 0.5400, 
0.7000, 0.98500; the shape labelled 03 is a perfect spheroid with the same volume and surface area 
as the original cell; (b )  k = 20 at times 0, 0.10, 0.20, 0.30, 0.4025, 0.5025, 0.6025, 0.7025, 0.8025, 
0.8825. 
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FIGURE 7 .  The effect of shear elasticity : a plot of the azimuthal versus the meridional membrane 
tension along the cell contour, a t  an asymptotic stage of evolution, for E = -0.300, and k = 0 , 5 ,  10, 
20. The tip of the spheroid is indicated with a dot. Pu’ote that for k = 0, or along the axis of 
deformation, these tensions are equal. 

increased, the rate of cell deformation is reduced. Turning to  figure 6 ( b ) ,  
corresponding to k = 20, we observe a drastic change in behaviour ; the cell deforms 
into a stationary compound shape which is composed of a main spheroidal body and 
of two large concave regions at either tip. The radius of curvature of the membrane 
a t  the base of each concave region is monotonically decreasing in time, indicating the 
spontaneous appearance of a sharp corner. Unfortunately, because of the necessary 
numerical smoothing, we were not able to resolve with confidence the asymptotic 
behaviour of the radius of curvature at the corner. One has to  keep in mind however, 
that  however small the bending resistance, bending stresses become important in the 
vicinity of sharp corners because of the large local curvature, and hence our 
simplified model is bound to be of limited accuracy. 

Proceeding, we consider the effect of shear elasticity on the magnitude of the 
developing membrane tensions. Thus, in figure 7 we plot the azimuthal membrane 
tension T++ against the meridional membrane tension T,, along the cell contour, a t  the 
asymptotic stages of deformation (the dots indicate the tip of the cell). These 
tensions are identical when k = 0, for the cell membrane tension is isotropic. Overall, 
we observe that increasing k causes a decrease in the magnitude of both T,, and T++. 

For k = 0,5,10, the azimuthal tension is always smaller than the meridional one, as 
suggested by the fact that  all curves in figure 7 lie on or below the diagonal line. For 
k = 10, T becomes negative over a substantial portion of the cell contour. The 
physical significance of this behaviour will be discussed in the next section. For 
k = 20, we observe an irregular behaviour, indicative of the formation of a sharp 
corner. Over the central portion of the membrane T,, is nearly constant, close to zero, 
whereas T shows rapid variations. 

When viewed in comparison with figure 5 (a ) ,  the results of figure 6 (a,  b)  strongly 

+? 
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FIGURE 8. The effect of shear elasticity : characteristic stages in the deformation of an oblate cell 
with E = -0.500, and k = 5, at times 0, 0.0825, 0.150, 0.2250, 0.3000, 0.3750, 0.4800, 0.5700, 
0.68250, 0.8475, 0.9750, 0.1775; the shape labelled co is a perfect spheroid with the same volume 
and surface area as the original cell. 

X 

suggest that shear elasticity prevents membrane folding. This is indeed verified by 
the results presented in figure 8, depicted the evolution of a cell with E = -0.50, and 
k = 5.  In  this case, despite the pronounced initial disk-like shape, no folding occurs 
during the cell evolution. 

We now turn our attention to prolate shapes, with positive values of E .  Admittedly, 
the physical significance of these shapes is weaker than that for oblate shapes, but 
their study is of some academic value. In figure 9 (a )  we present successive stages in 
the evolution of an initially prolate cell with E = 0.50, sphericity index 9' = 1.038, 
and isotropic membrane tension k = 0. Note that the unstressed shape, a t  t = 0, 
contains a slight axisymmetric dimple a t  the midplane 2 = 0. As the cell is stretched 
under the action of the imposed elongational flow, the depth of this dimple decreases. 
Asymptotically a t  large times, the cell transforms into a perfect spheroid with aspect 
ratio E = a / b  = 2.014, labelled t = 00. In  figure 9 ( b )  we present the distribution of 
the membrane tension for the various profiles presented in figure 9(a) .  As the cell 
starts deforming, the magnitude of the membrane tension increases all around the 
contour of the cell. At large times, the distribution of the membrane tension reduces 
to that for the prolate spheroid. This transition is not monotonic, but proceeds 
through an overshooting a t  the final stages of deformation. 

The evolution of prolate cells with different values of E is similar to that described 
in figure 9 (a,  b ) .  As an example, in figure 10 (a )  we present characteristic stages in the 
evolution of a cell with E = 1.00, k = 0. Asymptotically a t  large times, the cell 
reduces into a perfect prolate spheroid with E = 3.118. Figure 10(b) shows the 
corresponding transient distributions of the isotropic membrane tension. There is an 
overshooting of the membrane distribution a t  the final stages of deformation, similar 
to that observed in figure 9(6). The membrane tension is positive at all times. 
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FIGURE 9. (a) Characteristic stages in the deformation of a prolate cell with E = 0.500, and k = 0, 
a t  times 0, 0.250, 0.500, 0.7650, 0.100, 0.1500, 0.290; the shape labelled 00, which is in- 
distinguishable from that a t  time 0.2900, is a perfect spheroid with the same volume and surface 
area as the original cell; (b) the isotropic tension distribution for the stages shown in (a) ;  note the 
overshooting of the distribution at the final stages of deformation. 
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FIGURE 10. (a)  Characteristic stages in the deformation of a prolate cell with E = 1.000, and 
k = 0, at times 0, 0.025, 0.075, 0.1000, 0.2550, 0.3675, 0.6825; the shape labelled 00, which is 
indistinguishable from that a t  time 0.6825, is a perfect spheroid with the same volume and surface 
area as the original cell ; ( b )  the isotropic stress distribution for the stages shown in (a) ; note the 
overshooting of the tension in the final stages of deformation. 
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FIGURE 11. The effect of shear elasticity: the azimuthal versus the meridional membrane tension 
along the cell contour, at  the asymptotic stages of evolution, for E = 0.5000, and k = 0, 5, 10, 20. 
The tip of the spheroid is indicated with a dot. Note that for k = 0 or along the axis of the cell, these 
stresses are equal. 

For cells with a prolate unstressed shape, the membrane shear elasticity k has only 
a minor effect on the asymptotic cell configuration, but has a pronounced effect on 
the magnitude of the transient and asymptotic membrane tensions. To demonstrate 
this feature, in figure 11 we plot T$$ versus T,, for B = 0.50, and k = 0,5,10,20 (a dot 
indicates the tip of the cell). For finite values of k ,  near the tip of the cell, T,, is greater 
than T$+, while near the midplane of the cell, 7,, is smaller than T+$. Overall, the 
magnitude of the membrane stresses does not show appreciable variations with k. 

We performed additional calculations using as an initial cell shape the normal 
shape proposed by Evans & Fung (1972). The results were in qualitative agreement 
with those described for oblate cells (see in particular figures 5 and 8). 

5. Closing remarks 
Our calculations showed that when placed in axisymmetric straining flow, prolate 

or oblate axisymmetric cells with isotropic membrane tension reduce into prolate 
spheroids. Highly oblate cells may fold and develop a pocket along the axis of 
deformation. Finite membrane shear elasticity prevents membrane folding, but may 
catalyse the formation of sharp corners and concave regions along the cell contour. 
For oblate cells, decreasing the shear elasticity causes an appreciable increase in the 
magnitude of the developing membrane tensions. 

Our analysis for stationary spheroidal cells may be used to obtain an approximate 
estimate of the maximum strain rate above which a red blood cell is expected 
to break up. Indeed, i t  is well established that the average area of a red cell is 
approximately 44 % larger than the minimum area required for the spherical shape 

9 FLM 216 
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(Skalak et al. 1989). Using (4.1) we find that the corresponding sphericity index is 
equal to 1.20. Furthermore, using (4.2) we find that the eccentricity of a spheroid 
with volume and surface area identical to those of the cell is a/b  = 6.0. Equations 
(3.14a,b) then show that the maximum isotropic tension on this spheroidal cell is 
approximately equal to  36. Reverting to  dimensional variables, and setting the 
maximum allowable membrane tension to 10 dyn/s (Evans, Waugh &, Melnik 1976), 
we find a maximum permissible rate of strain equal to emax = 10/(36 pa) (dyn/cm). 
Using p = 12 cP (for plasma) and a = 2.8 pm (Skalak et al. 1989) yields emax = 
8250 s-l. Since this is only an approximate estimate, we may set emax = lo5 s-'. For 
comparison, we note that the strain rate usually used in experimental studies of red 
cells is of the order lo2 s-l (Tran-Son-Tay et al. 1984). 

Our theoretical results for oblate spheroids showed that the membrane tension 
takes negative values, which means that i t  is compressive. Similarly, our numerical 
results showed that in the case of vanishing elasticity, the transient isotropic 
membrane tension may take negative values. Furthermore, in the case of finite 
elasticity, not only the transient but also the asymptotic membrane tension may be 
compressive. This would not seem to be realistic since a cell membrane with zero 
bending rigidity would immediately buckle under compression. In the numerical 
solution such a buckling is eliminated by the use of numerical smoothing which 
appears to  give the membrane an artificial finite non-zero bending rigidity. Thus, 
some of the numerical shapes obtained while representing solutions to the posed 
problem are unstable solutions and would not be realized in practice. It would then 
seem imperative to  incorporate the bending resistance in the mechanical model for 
the cell membrane, a t  the expense, however, of simplicity of modelling and computer 
programming. 

Our results revealed a number of novel mechanisms in the cell deformation whose 
physical interpretation should be treated with caution. In  a large-scale blood flow, 
red blood cells are instantaneously subjected to three-dimensional elongational and 
rotational flow fields. Crudely speaking, the elongational component causes cell 
deformation, while the rotational component causes cell rotation and membrane 
tank-treading motion. It is likely that the tank-treading motion will inhibit the 
development of sharp corners and the formation of concave regions along the cell 
contour. Indeed, observations of red blood cells in a two-dimensional shear flow 
reveal that the cells deform into elongated ellipsoids with the flat side normal to the 
plane of flow (Tran-Son-Tay et al. 1984). 

Comparing our results to those for liquid drops or for capsules confined by elastic 
membranes, we find an important variation (Rallison & Acrivos 1978; Li et al. 
1988). When placed in a sufficiently strong elongational flow, both of these particles 
undergo continuous deformation followed by eventual breakup. In  contrast, red cells 
always undergo finite deformation reducing into spheroids. Thus, the mechanism of 
destruction of red cells appears to  be fundamentally different to that of drops or 
capsules, as it is exclusively due to the mechanical failure of the enclosing membrane. 
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Appendix 
The elements of the matrix M of equation (2.5) are defined as 

M,, = 2 k ( E r ( F + : E ) ,  

M,, = k- 

k a 2  
M,, = -(-) [ (a: + a2 + 2 9 )  F -  (2P4 + 3 5 3 4  + a2) + (u; - a2)2) - 

“0 

where P = x-xo, and 

F and E are the complete elliptic integrals of the first and second kind with 
argument k. 
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